
Decision errors regarding portfolio optimization: the
ameliorating role of conservative selection via the
concentration of probability phenomenon

Introduction

Portfolio optimization based on stochastic dominance (SD) is a non-parametric generalization
of the standard mean-variance approach, for the optimal selection of portfolio weights’
regarding investment strategies outside the realm of satiation and/or elliptical returns’
distributions.1

In the relevant literature (see for example Constantinides et al. (2020) (3)) portfolio
selection is usually performed via the optimization of an empirical criterion under the
constraint that the choice set is comprised by portfolios that empirically dominate an
exogenous benchmark portfolio. The empirically optimal portfolio by construction dominates
the benchmark in the sample, it is however susceptible to the decision error of False
Dominance (FD) classification in the population.

Under general sampling schemes this decision error becomes asymptotically negligible.
Controlling the probability of this error for fixed sample size is however important in
applications, especially when the sample size is not particularly large compared to the
dimensionality of the base assets considered. In several relevant applications a heuristic
used in the underlying empirical optimization seems to improve the out-of-sample properties
of the optimal portfolio. The optimization problem is augmented by a restriction on the
distance of the portfolio sought compared to the benchmark. Is this heuristic theoretically
justified?

Stochastic dominance and portfolio optimization framework

(Xt)t∈Z is a stationary process with values in some subset of Rd. The random vector
Xt represents the one period stationary returns of d financial assets, and X ⊂ Rd is the
pointwise bounded from below support of its’ latent joint distribution. Boundedness from
above is considered plausible for moderate observation frequencies. The researcher has at
her disposal an observable sample from the process, (Xt)t=1,··· ,T ; PT denotes the empirical
distribution of the sample.

1 This post is heavily based on the results and formulations of the paper here.
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A portfolio on X0 is any real linear function on Rd; the elements of its representing
vector are the portfolio weights. Alternative portfolios are evaluated inside the expected
utility paradigm, using utility functions u : X → R that are increasing, continuous, and
concave. Those utilities form the population of the functional set U2.

The analysis involves a set of portfolios Λ ⊆ Rd. In what follows λ, τ denote respectively
a typical element of Λ and a distinguished benchmark portfolio inside Λ.

The above enable the definition of a stochastic dominance relation on the sets of
prospects, via U2: in the stationary framework considered, λ is said to dominate τ w.r.t.
the utility class U2 iff D(u, τ ,λ,P) := EP(u(λ

′X0)) − EP(u(τ
′X0)) ≥, ∀u ∈ U2-here EP

denotes integration w.r.t. P. Thus, λ is preferred over τ by every utility in the considered
class, this is what is known in the literature as the second order stochastic dominance

of λ over the benchmark τ ; λ ⪰
P,2

τ . Λ⪰
P :=

{
λ ∈ Λ;λ ⪰

P,2
τ

}
is the non-empty convex

set of portfolios that dominate the benchmark in the population. Non-emptyness holds
due to reflexivity of the dominance relation; the benchmark actually dominates itself, and
convexity follows from the concavity of the utility functions at hand, the linearity of the
portfolio formation and the monotonicity of the integral. Substituting the latent P with PT

in ⪰
P,2

, the empirical analogue Λ⪰
PT

is obtained.

Consider a choice λPT
∈ Λ⪰

PT
. Controlling the probability of FD for λPT

, i.e. P(λ ⪰
PT ,2

τ )⧸λ ̸⪰
P,2

τ ), can be of particular empirical interest, as FD can lead to suboptimal portfolio

choices. This can asymptotically-as T → ∞-vanish as long as the probabilistic properties of
the sampling scheme ensure that PT ⇝ P plus some moment uniform existence conditions.
The question of controlling this probability is also of interest for fixed-and potentially
realistically large enough T . This is what is investigated in the subsequent analysis.

Every choice λP ∈ Λ⪰
P can be represented as a solution-albeit in some cases trivial-

of the optimization problem max
λ∈Λ⪰

P
EP(u(λ

′X0)) for some u ∈ U2. More importantly

for a given non-constant u ∈ U2 any solution, say λ(u,P), to the optimization problem
max

λ∈Λ⪰
P
EP(u(λ

′X0)) can be of economic interest; any such latent portfolio is perceivable

as the best a risk averter investor with preferences represented by the particular u can
achieve in terms of expected utility, if she insists on working with portfolios that would be
weakly preferred by every risk averter to the benchmark. This is a problem of portfolio
optimization augmented with stochastic dominance (second order) SD conditions.

Latency of P implies generally latency of λ(u,P). The latter can be statistically approx-
imated by its empirical analogue; λ(u,PT ), i.e. the solution to the empirical portfolio opti-
mization augmented with empirical stochastic dominance conditions max

λ∈Λ⪰
PT

EPT
(u(λ′x)).

Hence the analysis that follows considers an arbitrary yet fixed u and asks whether there is
a modification of the optimization problem that enables the non-asymptotic investigation
of the probability of FD for its solutions.
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Regularized formulation of portfolio optimization

A modification used in practice augments the expected utility criterion with an additive
regularization term that depends on the ℓp distance between the portfolio sought and the
benchmark. The intuition is that when the (Lagrange) multiplier of the aforementioned
distance is chosen optimally, then in order for a portfolio that lies ”away” from the
benchmark to solve the optimization problem, it would have to ”strongly” satisfy the
empirical dominance conditions at least in some neighborhood of u.

As mentioned above, the ℓp-distance from the benchmark portfolio weights is considered

here, ∥λ− τ∥p := (
∑d

i=1 |λi − τi|p)1/p, for the case where p ≥ 1, and maxi=1,...,d |λi − τi|
for p = +∞. The regularized optimization portfolio is then defined by:

λ(u,PT , p, ξT ) ∈ argmax
Λ

P⪰
T

(EPT
(u(λ′x))− ξT ∥λ− τ∥p), (1)

where the random variable ξT ≥ 0 assumes the role of the regularization (Lagrange)
multiplier. Its optimal selection is expected to influence the non-asymptotic properties of
the probability of FD. The modified problem additionally thus depends on both the choice
of the multiplier ξT and the norm order p.

Results

The issue of the derivation of non-asymptotic properties for the portfolio solutions of the
empirical regularized problem is considered here, with a view towards the fixed T properties
of the probability of FD.

Some further notation will be useful: for Q an arbitrary distribution on Rd, and q defined
via 1

p + 1
q = 1, the first Wasserstein distance between Q and the empirical distribution PT

is W(PT ,Q; p) := minγ∈Γ(PT ,Q)

∫
Rd×Rd ∥z − z⋆∥q dγ(z, z⋆), where Γ(PT ,Q) denotes the set

of probability distributions on Rd × Rd that have respective ”marginals” PT , Q, and also
have finite first moment. For ϵ > 0, Mp(PT , ϵ) := {P : W(PT ,Q; p) ≤ ϵ} is the Wasserstein
closed ball centered at PT with radius ϵ.

The notion of the Wasserstein distance plays a very important role in modern probability;
it is directly connected to the problem of optimal transport which has several interesting
interpretations in economics (see Galichon (2018) (4)). It formulates geometries for spaces
of probability distributions that have surprising connections to entropy and the geometry
of the underlying spaces upon which those distributions are defined. We will explore such
issues in subsequent posts. For now it is sufficient that they are helpful in defining balls
comprised of probability measures centered at PT .

Conservative formulation

A characterization of the regularized problem in (1) as a distributionally robust optimization
(DRO) problem is obtained here. It is based on strong convex duality results for robust
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optimization (see for example Lemma 1 of Gao, Chen, and Kleywegt (2017) (5)).
The event defined as

E2 :=
{
∀v ∈ U⋆

2 , ∀λ(v,PT , p, ξT ) : inf
Q∈Mp(PT ,ξT )

D(v, τ ,λ(v,PT , ξT ),Q) > 0

}
,

is comprised by every sample realization for which every choice of the objective utility results
to non-trivial empirical solutions; there U⋆

2 is a subset of U2 comprised of non-constant
utilities. Then it can be proven:

Proposition 1. (Distributional Robustness). Suppose that u has a unital Lipschitz coeffi-
cient. Then, conditional on E2, Problem (1) is equivalent to:

sup
Λ⪰

ξT

inf
Q∈Mp(PT ,ξT )

EQ(u(λ
′x)); (2)

where Λ⪰
ξT

:=

{
λ ∈ Λ : inf

Q∈Mp(PT ,ξT )
D(v, τ ,λ,Q) > 0, ∀v ∈ U⋆

2 − {0}
}
. (3)

Lipschitz coefficient unitarity holds for example in the case of portfolio choice via
maximization of expected return; then u is the identity. More generally, given that utility
rescaling does not affect preferences and optimal choice, if u is non-trivial and has a bounded
derivative, then the Lipschitz coefficient can be always be ”chosen” equal to one. Hence
this restriction on the properties of the objective is in many cases empirically innocuous.

The regularized version of the objective function is then equal, due to duality, to a
robust expected value of u(·′x); actually this equals the most conservative expectation over
the distributions inside the ball centered at the empirical distribution, with radius formed
by the Lagrange multiplier.

E2 implies then that the regularization also permeates the totality of the non-trivial SD
conditions. It implies that λ dominates τ only if dominance holds w.r.t. the SD conditions
formed by every distribution in the above-mentioned ball; regularization of the objective
also implies conservativeness in the formulation of the SD conditions, at least for every
sample realization associated with the particular event. But how is this related to the
probability of FD classifications?

Non-asymptotic bounds for the false dominance probability

For τ > 0 let h(τ) :=
1+lnEP[exp(τ∥x∥22)]

τ , and form > 2 let C(d) := 2×3d−log3(d)I(d−log3(d) <
log3(T )

2 ) + 4EP[∥x∥m2 ]I(d− log3(d) ≥
log3(T )

2 ), where I denotes the indicator function. Also,

d(p) := dl, l := max(12 −
1
p ,

1
p −

1
2) =

{
1
p − 1

2 , p ≤ 2
1
2 − 1

p , p > 2.
. The following result is then obtained:
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Proposition 2 (False Dominance Classification). Suppose that (Xt)t∈Z is iid, that d > 2,

that for some τ > 0, EP(exp
(
τ ∥x∥22

)
) < +∞, and that u has unital Lipschitz coefficient.

Then, for any T ≥ 1, and if ξT > 2C(d)d(p) supΛ ∥λ∥2 T
− 1

d

P(Λ⪰
ξT

−Λ⪰
P ̸= ∅⧸ E2) ≤ exp

−

(
1− C(d)T− d+1

d

)2
Tξ2T

8d2 (p) infτ>0 h2(τ) supΛ ∥λ∥22

 . (4)

Consequently, if the event E2 holds w.h.p. and Tξ2T → ∞, then the probability of FD

classification for the elements of Λ⪰
ξT

converges to zero.

The result relies first on the iidness of the sample; it can be extended to m-dependent
processes as well as to a class of Markov processes (see Boissard (2011) (1)). It also relies
on the existence of some square-exponential moment for ∥X0∥22. This is equivalent to
the existence of the moment generating function of ∥X0∥22 in a neighborhood of zero, a
condition that fails whenever ∥X0∥ follows a distribution with the right-tail behavior of the
log-normal distribution. The exponential moment existence holds whenever X is bounded,
or more generally whenever its squared elements follow sub-Gaussian distributions (see
indicatively Chapter 2 of Vershynin (2018) (7)). The maximal moment parameter τ can

be estimated via the ratio
(κ+1)EPT (∥X0∥2κ2 )
EPT (∥X0∥2κ+2

2 )
, due to the power series representation of the

exponential moment and the properties of the ratio test for real series. Given this the
optimization resulting to infτ>0 h

2(τ) can be empirically approximated. The choice of some
non-optimal τ can also be considered at the cost of a potentially less efficient probability
bound, and a larger regularization parameter.

The probability bound declines exponentially fast in Tξ2T , and holds for all T as long as
the regularization parameter dominates a sequence of order exp(− lnT

d ); this declines slowly
when the base asset dimensionality is large. This low rate of asymptotic negligibility for
the multiplier can be circumvented at either the cost of some positive large multiplicative
constant in front of the probability bound, or at the cost that the results hold eventually
for large enough T that also depends on the multiplier (see for example Bolley et al. (2007)
(2)).

The result says that under E2, the probability that there exist empirically enhanced
portfolios that are non dominant in the population, is bounded above by the exponential

exp

−

(
1−C(d)T− d+1

d

)2

Tξ2T

8d2(p) infτ>0 h2(τ) supΛ∥λ∥22

. The bound depends on the regularization coefficient, the

base assets dimensionality, the size of the portfolio space, through d (p) on the choice of the

ℓp norm, and the squared exponential moment parameter; e.g, if d− log3(d) ≥
log3(T )

2 and

ξT = 2cC(d)d(p) supΛ ∥λ∥2 T
− 1

d , for c > max(1, 1
8d(p) infτ>0 h(τ)

) and p slightly less than 2,
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then the result implies that the probability of FD error is eventually bounded above by
exp(−c⋆T 1− 2

d ) for some (estimable) positive constant c⋆.

Thus, for a given significance level α ∈ (0, 1), and if T ≥ (− ln(α)
c⋆ )

d
d−2 , the probabil-

ity of FD is thus bounded above by α. The same upper bound on the probability of
FD holds whenever the regularization parameter is greater than the maximum between√

−8 ln(α)d(p) infτ>0 h(τ)∣∣∣∣1−C(d)T− d+1
d

∣∣∣∣ supΛ ∥λ∥2 T
− 1

2 and 2C(d)d(p) supΛ ∥λ∥2 T
− 1

d .

Hence, through the inequality (4), and at least in the present restrictive framework, the
particular regularization of the SD enhanced portfolio optimization problem provides with
possibilities for control of the FD decision error, when either the regularization parameter is
conveniently selected, and/or the sample size is large enough. This is an initial theoretical
justification of the heuristic mentioned in the introduction.

Discussion

The proof of Proposition 2 crucially depends on an inequality of the form

P
(
W

(
PT ,P;

1

2

)
> t⋆ + E

(
W

(
PT ,P;

1

2

)))
≤ exp

(
−Tt⋆2

2 infτ>0 h2(τ)

)
.

This is an example of a concentration inequality; it provides, a hopefully tight, non-
asymptotic bound on the probability that the positive random variable W

(
PT ,P; 12

)
exceeds

its expected value. Such inequalities are very useful since among others-as the aforementioned
proposition suggests-they could provide with non-asymptotic control of the risk associated
with procedures of statistical inference.

There is a thriving literature in mathematical analysis, geometry and probability theory
(see for example Ohta and Takatsu (2011) (6) and the references therein), that surprisingly
connects the validity of concentration inequalities with strong convexity properties of the
entropy of the probability distributions at hand, information inequalities relating entropy
with the Wasserstein distance, and generalized concepts of curvature related to the geometry
of the spaces that shelter those distributions. The subsequent posts will investigate whether
suchlike connections can be used to extend results like (4) to non iid frameworks, and can
furthermore provide non-asymptotic enhancements to econometrically relevant statistical
procedures like the predictive ability tests considered in a previous post. To be continued!
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